Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency.
نویسندگان
چکیده
Peroxisome proliferator-activated receptor-gamma co-activator 1alpha (PGC1alpha) is a promiscuous co-activator that plays a key role in regulating mitochondrial biogenesis and fuel homeostasis. Emergent evidence links decreased skeletal muscle PGC1alpha activity and coincident impairments in mitochondrial performance to the development of insulin resistance in humans. Here we used rodent models to demonstrate that muscle mitochondrial efficiency is compromised by diet-induced obesity and is subsequently rescued by exercise training. Chronic high fat feeding caused accelerated rates of incomplete fatty acid oxidation and accumulation of beta-oxidative intermediates. The capacity of muscle mitochondria to fully oxidize a heavy influx of fatty acid depended on factors such as fiber type and exercise training and was positively correlated with expression levels of PGC1alpha. Likewise, an efficient lipid-induced substrate switch in cultured myocytes depended on adenovirus-mediated increases in PGC1alpha expression. Our results supported a novel paradigm in which a high lipid supply, occurring under conditions of low PGC1alpha, provokes a disconnect between mitochondrial beta-oxidation and tricarboxylic acid cycle activity. Conversely, the metabolic remodeling that occurred in response to PGC1alpha overexpression favored a shift from incomplete to complete beta-oxidation. We proposed that PGC1alpha enables muscle mitochondria to better cope with a high lipid load, possibly reflecting a fundamental metabolic benefit of exercise training.
منابع مشابه
p38γ Mitogen-Activated Protein Kinase Is a Key Regulator in Skeletal Muscle Metabolic Adaptation in Mice
Regular endurance exercise induces skeletal muscle contractile and metabolic adaptations, conferring salutary health benefits, such as protection against the metabolic syndrome. The plasticity of skeletal muscle has been extensively investigated, but how the adaptive processes are precisely controlled is largely unknown. Using muscle-specific gene deletion in mice, we now show that p38gamma mit...
متن کاملRole of calcineurin in exercise-induced mitochondrial biogenesis.
Raising cytosolic Ca2+ induces an increase in mitochondrial biogenesis in myotubes. This phenomenon mimics the adaptive responses of skeletal muscle to exercise. It has been hypothesized that increases in cytosolic Ca2+ during motor nerve activity stimulate mitochondrial biogenesis by activating calcineurin. Overexpression of constitutively active calcineurin increases expression of peroxisome ...
متن کاملExercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway.
Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) promotes mitochondrial biogenesis and slow fiber formation in skeletal muscle. We hypothesized that activation of the p38 mitogen-activated protein kinase (MAPK) pathway in response to increased muscle activity stimulated Pgc-1alpha gene transcription as part of the mechanisms for skeletal muscle adaptation. Here ...
متن کاملPGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity.
The peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) is a major regulator of exercise-induced phenotypic adaptation and substrate utilization. We provide an overview of 1) the role of PGC-1alpha in exercise-mediated muscle adaptation and 2) the possible insulin-sensitizing role of PGC-1alpha. To these ends, the following questions are addressed. 1) Ho...
متن کاملPGC-1α Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis
The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was targeted in mice. PGC-1alpha null (PGC-1alpha(-/-)) mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 280 39 شماره
صفحات -
تاریخ انتشار 2005